www.vinodsrivastava.com/Maths

Address Calculation

Row Major Order:

Column Major Order :

$$
\text { Address of } A[R][C]=B A+W\left[(R-L B R)^{*} N+(C-L B C)\right]
$$

$$
\text { Address of } A[R][C]=B A+W[(I-L B R)+(J-L B C) * M]
$$

Where : BA = Base Address W=Size of elements $I, J=$ Find or determine the location LBR=Lower Bound of row $N=$ Number of columns $L B C=$ Lower bound of column

- LBR \& LBC=0 and UBR $=\mathrm{N}$ and $\mathrm{UBC}=\mathrm{M}$: if 2- DEMENSIONAL ARRAY IS IN THE FORM OF A[N][M]
FOR EXAMPLE -> A[20][30]
- BUT IF 2- DEMENSIONAL ARRAY IS IN THE FORM OF A[LBR........N][LBC......LBCM] FOR EXAMPLE -> A[2........20][4........30]

$$
M=U B C-L B C+1 ; \quad N=U B R-L B R+1 ;
$$

Solved Examples

A double dimension array DA[20][40] is stored in computer's main storage. Every element of DA requires 8 bytes of memory. If the base address of DA is 1000 then calculate the address of DA[20][30] when the array is stored as: i)Row Major ii)Column Major
$N=20, M=40, B A=2000, W=8, R=20, C=30 L B C=0, L B R=0$
Row Major: Address of DA[R][C] $=\quad B A+W *(R-L B R) * M+(C-L B C))$
Address of DA[20][30] $=\quad 2000+8$ * ((20-0) * $40+(30-0))$
$=8640$
Col Major: Address of DA[r][c] $\left.=\mathrm{BA}+\mathrm{W}^{*}(\mathrm{R}-\mathrm{LBR})+(\mathrm{C}-\mathrm{LBC})^{*} \mathrm{~N}\right)$
Address of DA[20][30] $=2000+8 *((20-0)+(30-0) * 20)$

A double dimension array DD[5..25][7..30] is stored in computer's main storage. Every element of DD requires 4 bytes of memory. If the base address of DD is 1000 then calculate the address of DD[17][25] when the array is stored as: i) Row Major ii) Column Major
$\mathrm{lbr}=5, \mathrm{ubr}=25, \mathrm{~N}=\mathrm{ubr}-\mathrm{lbr}+1=25-5+1=21$
$\mathrm{lbc}=7, \mathrm{ubc}=30, \mathrm{M}=\mathrm{ubc}-\mathrm{lbc}+1=30-7+1=24$
Base $=1000, W=4, r=17, c=25$
Row Major: Address of $D D[r][\mathrm{c}]=\quad=\quad B a s e+W$ * ((r l lbr) * $\mathrm{M}+(\mathrm{c}-\mathrm{lbc})$)
Address of DA[17][25] $=1000+4^{*}((17-5) * 24+(25-7))$
$=2224$
Col Major: Address of DD[r][c] $\quad=\quad$ Base $+\mathrm{W}^{*}((\mathrm{r}-\mathrm{lbr})+(\mathrm{c}-\mathrm{lbc})$ * N$)$
Address of DA[17][25] $=1000+$ 4 $^{*}((17-5)+(25-7) * 21)$
$=2560$
A double dimension array MAT[20][25] is stored in computer's main storage as row wise. If the address of MAT[24][8] is 3932 and address of MAT[33][21] is 4884, then find the base address, width (W) and also calculate the address of MAT[27][19].
$N=40, M=25$
Base + W * $(24$ * $25+8)=3932$ Or, Base +608 * W = 3932
Base + W * $(33$ * $25+21)=4884$
Or, Base +846 * $\mathrm{W}=4884$
Subtracting (1) from (2)
Base + 846 * W $=4884$
Base + 608 * W = 3932
238 * W = 952
W = 952 / $238=4$
Substituting the value of W in (1)
Base + 4* $608=3932$
Base $=3932-2432=1500$
Address of MAT[27][19] $=1500+4$ * $(27 * 25+19)=4276$
A double dimension array MAT[20][30] is stored in computer's main storage as column major. If the address of address of MAT[15][23] is 4850 and address of MAT[12][18] is 4232, then find the base address, width (W) and also calculate the address of MAT[16][25].
$R O W=20, C O L=30$
Base + W * $(15+23$ * 20) $=4850 \quad$ Or, Base +475 * W $=4850$
Base + W * $(12+18$ * 20$)=4232$
Or, Base +372 * $\mathrm{W}=4232$
Subtracting (2) from (1)
Base + 475 * $\mathrm{W}=4850$
Base + 372 * W = 4232
103 * W = 618
W = 618 / $103=6$
Substituting the value of \mathbf{W} in (1)
Base + 6 * $475=4850$
Base $=4850-2850=2000$
Address of MAT[16][25] $=2000+6$ * $(16+25 * 20)=5096$

Row Major/Column Major Address Calculation

Try Yourself

1. An array $x[8][20]$ is stored in the memory with each element requiring 2 bytes of storage. If the base address of the array is 2500, calculate the location of $x[5][5]$ when the array x is stored using the column major order and row major order.
2. An array $\operatorname{Arr}[1.20][1 . .20]$ is stored in the memory with each element requiring 4 bytes of storage. If the base address of array Arr is 2000, determine the location of Arr[15][9] when the array Arr is stored in (1) Row wise and (2) Column wise.
3. An array MAT[30][10] is stored in the memory row wise with each element occupying 8 bytes of memory. Find out the base address and the address of the element MAT[15][5], if the location of MAT[5][7] is stored at the address 3000.
4. An array MAT[20][25] is stored in the memory with each element requiring 2 bytes of storage. If the base address of MAT is 4000 MAT[[12][8] when the array stored in (i) RMO and (ii) CMO
5. An array ARR[15][20] is stored in the memory, along the row with each element occupying 4 bytes . Find out the base address and the address of the element ARR[3][2] if the element ARR[5][2] is stored at the address 1500.
6. Each element of an array Data[20][50] required 4 bytes of storage, Base address of data is 2000, determine the location of Data[10][10] when the array is stored as (a) row major (b) column major
7. An array $A[11][21]$ is stored in the memory with each element requiring 2 bytes of storage. If the base address of array in memory is 300, determine the location of a[5][31] when the array is A stored by (i) Row major (ii) Column major
8. An array VAL[1...15][1...10] is stored in the memory with each element requiring 4 bytes of storage. If the base address of array VAL is 1500, determine the location of VAL[12][9] when the array VAL is stored (i)row-wise (ii)column-wise
9. An array ARR[15][35] is stored in the memory along the column with each of its elements occupying 8 bytes. Find out the bas address and the address of an element Arr[2][5], if the location Arr[5][10] is stored at the address 4000.
10. An array $\operatorname{Arr}[35][15]$ is stored in the memory along the row with each of its elements occupying 4 bytes. Find the bas address and the address of an element Arr[20][5], if the location Arr[2][2] is stored at the address 3000.
11. An array arr[15][20] is stored in the memory along the row with each element occupying 4 bytes. Find out the base address and address of the element arr[3][2], if the element arr[5][2] is stored at the address 1500.
12. An array MAT[30][10] is stored in the memory column wise with each element occupying 8 bytes of memory. Find out the bas address and the address of element MAT[5][7] is stored at the address 1000.
13. If an array $\mathrm{B}[11][8]$ is stored as column wise and $\mathrm{B}[2][2]$ is stored at 1024 and $\mathrm{B}[3][3]$ at 1084 , find the address of $\mathrm{B}[5][3]$ and $\mathrm{B}[1][1]$.

Row Major/Column Major Address Calculation

14. An array $\operatorname{Arr}[50[100]$ is stored in the memory along the row with each element occupying 2 bytes. Find out the address of the location ARR[20][50] if location of Arr[20][30] is 1350.
15. An array $x[30][10]$ is stored in the memory with each element requiring 4 bytes of storage. If the base address of x is 4500, find out memory locations of $x[12][8]$ and $x[2][4]$, if the content is stored along the row.
16. An array ARR[15][35] is stored in the memory along the column with each of its elements occupying 8 bytes. Find out the base address and the address of an element ARR[2][5] , if the location is stored at the address 4000
17. An array $X[15][10]$ is stored in memory with each element requiring 2 bytes of storage. If the base address of array is 2000, calculate the location of X [7][8] when the array is stored by (1) row major order (2) column major order.
18. $\mathrm{X}[1 . .6][1 \ldots .10]$ is a two dimensional array. The first element of the array is stored at Location 100. Each element of the array occupies 6 bytes. Find the memory location of X[2][4] when (i) array is stored row wise. (ii)array is stored column wise
19. Each element of an array $A[-20 . .20,10 . .35]$ requires one byte of storage. If the array is stored in column major order beginning location 500 , determine the location of $A[0,30]$.
20. An array $\mathrm{S}[35][15]$ is stored in the memory along the row with each of its elements occupying 4 bytes. Find out the memory location for the element $\mathrm{S}[20][5]$, if an element $\mathrm{S}[2][2]$ is stored at the memory location 3000.
21. Given the two dimensional array a[10][20] base address of a is 100 and width of each element is 4 bytes. Find the location of a[8][15] when the array is stored as column-wise and row-wise
22. An array $\mathrm{A}[-2 . .8][-2 . .5]$ is stored in the memory along the column with each element occupying 4 bytes. Find out the address of the element $A[3][2]$.
