
C++ Notes Class XII Pointer and It’s Application

FAIPS, DPS Kuwait Page 1 of 17 © Bikram Ally

Hexadecimal Integer: In a programming language like C++, it is possible to represent an integer constant

in different form. Generally an integer value is represented as a Decimal integer. A decimal integer value

consists of any 10 digits (0-9). Integers 29, 73545, 8545, -34, -428954 and 3945 are example of

Decimal integer values. In C++ it is also possible to represent an integer as a Hexadecimal integer. A

Hexadecimal integer value consists of 16 digits (0-9, A-F). Integers 2A, 4B6C, ABCD and F16 are

example of Hexadecimal integer constant. In a C++ program Hexadecimal integer constant is prefixed

by 0x. For example 1B4C is a Hexadecimal integer constant but in C++ program it will be represented

as 0x1B4C. An example of decimal integer and Hexadecimal integer is given below:

#include<iostream.h>

void main()

{

int hi=0x1B4C;

int di=174911;

cout<<"Dec="<<hi<<","<<"Dec="<<di<<endl;

cout.setf(ios::hex, ios::basefield);

cout<<"Hex="<<hi<<","<<"Hex="<<di<<endl;

}

Running of the program produces following output:
Dec=6988,Dec=174911

Hex=1B4C,Hex=2AB3F

Pointer
A variable in C++ has three characteristics – data type of the variable, value stored in the variable and the

address of variable. So far in our programming examples we have only used the first two characteristics,

that is, data type of the variable and the value stored in the variable. Address of a variable represents the

location of the variable in the computer’s main storage (RAM). The concept of address of a variable is

similar to address of house / flat / villa / shop in a city / town / village. To get an address of a variable we

use address operator (&) before a variable name. In C++ address of a variable is also known as Pointer.

Pointer (address) is displayed as a Hexadecimal integer. An pointer will display address except for a

pointer to a character. Pointer to a character will be discussed later. An example of pointer and address is

given below:

#include<iostream.h>

void main()

{

int a=2014;

double b=89.7;

cout<<"a="<<a<<" , b="<<b<<endl;

cout<<"&a="<<&a<<" , &b="<<&b<<endl;

}

Running of the program produces following output:
a=2014 , b=89.7

&a=0x0012ff88 , &b=0x0012ff80

Diagrammatic representation of variables created (in the above program) their respective addresses:

a b

2014 89.7

0012ff88 0012ff80

Variable a is assigned a value

20 and variable b is assigned

a value 88.5. First two

outputs display value stored in

the variable a and b. Last two

outputs display address of the

variables a and b. Addresses

of the variables are displayed

as Hexadecimal integers.

Variable hi is assigned a

Hexadecimal integer constant

while variable di is assigned

Decimal integer constant. First 2

outputs display values stored in

variables hi and di as Decimal

integer. Last 2 outputs display

values stored in variables hi and

di as Hexadecimal integer.

Variable Names

Values Stored

Address of the Variables

C++ Notes Class XII Pointer and It’s Application

FAIPS, DPS Kuwait Page 2 of 17 © Bikram Ally

Pointer Variable

To store an address of a variable we need to create a special type of variable called Pointer variable.

Creating a Pointer variable is similar to creating a variable of fundamental data type or array type.

Rule: DataType* PointerVarName;
DataType *PointerVarName;

DataType *PointerVarName1, *PointerVarName1, … ;

DataType could be fundamental data type or derived data type like structure type or class

type. Operator star (*) is needed between DataType and PointerVarName. Operator star

(*) implies that the variable that is being created is Pointer type. When using the Pointer

variable in the program, operator star (*) is never used, that is, in the program only

PointerVarName will be used.

Usage:
int* ip1;

int *ip2, *ip3;

char* cp1;

char *cp2, *cp3;

double* dp1;

double *dp2, *dp3;

Example:
void main()

{

int a=2014, *ip;

double b=89.7, *dp;

ip=&a;

dp=&b;

cout<<"a="<<a<<" , b="<<b<<endl;

cout<<"ip="<<ip;

cout<<" , dp="<<dp<<endl;

}

Running of the program produces following output:
a=2014 , b=89.7

ip=0x0012ff88 , dp=0x0012ff80

Diagrammatic representation of variables and pointers created in the above program, is given below:

ip a

dp b

Generally it is expected that the data type of the pointer variable and the date type of the variable whose

address is being assigned to the pointer variable must be same. A pointer to an integer stores an address

of an integer variable and a pointer to double stores address of a double variable. But suppose we mix data

type of the pointer variable and data type of the variable whose address is to be stored in the pointer

variable, then C++ compiler will flag a warning (Warning message: Suspicious Pointer Conversion).

An example is given below showing mixing data type while assigning address to pointer variables:

 Statement int *ip; creates an integer pointer

(pointer to an integer). An integer pointer can store an

address of an integer variable

 Statement char *cp; creates a character pointer

(pointer to a character). A character pointer can store

an address of a character variable

 Statement double *dp; creates a double pointer

(pointer to a double). A double pointer can store an

address of a double type

 A pointer variable is allocated 4 bytes of memory

2014 0012ff88

89.7 0012ff80

Variable a=20 and ip (pointer to integer)

is created. Variable b=88.5 and dp

(pointer to double) is created. Pointer ip

is assigned address of a and dp is assigned

address of b. Creation of pointer variable

and assigning an address to it can be

combined as one single statement. For

example:
int *ip=&a;

double *dp=&b;

C++ Notes Class XII Pointer and It’s Application

FAIPS, DPS Kuwait Page 3 of 17 © Bikram Ally

#include<iostream.h>

void main()

{

int a=2014, *ip;

double b=89.7, *dp;

ip=&b;

dp=&a;

cout<<"a="<<a<<" , b="<<b<<endl;

cout<<"ip="<<ip<<" , dp="<<dp<<endl;

}

Running of the program produces following output:
a=2014 , b=89.7

ip=0x0012ff88 , dp=0x0012ff80

Any pointer variable can be assigned NULL pointer (NULL value). NULL pointer represent 0 (zero)

address. A NULL pointer contains address 0x00000000. An example is given below:

#include<iostream.h>

void main()

{

int *ip=NULL;

double *dp=NULL;

cout<<"ip="<<ip<<endl<<"dp="<<dp<<endl;

}

Running of the program produces following output:
ip=0x00000000

dp=0x00000000

Since a pointer variable is variable, so just like any other variable, a pointer variable can either be a global

variable or it can be a local variable. A global pointer variable is created just after the header files and

before any block where as a local pointer variable is created inside a block. Default value of a global

pointer variable is NULL pointer and default value of a local pointer variable is a garbage address.

A global pointer variable has all the characteristics of a global variable and a local pointer variable

has all the characteristics of a local variable. If global pointer variable and a local pointer variable have

same name inside a block then scope resolution operator (::) is to be used with global pointer variable

name, so that, both the global pointer variable and the local pointer variable can be used inside the same

block.

#include<iostream.h>

int *gp, *p;

void main()

{

int *lp;

cout<<"gp="<<gp<<" , lp="<<lp<<endl;

int a=2014, *p=&a;

cout<<"::p="<<::p<<" , p="<<p<<endl;

}

Running of the program produces following output:
gp=0x00000000 , lp=0x0040ff27

::p=0x00000000 , p=0x0012ff84

Global pointer variables gp and

::p are created but not initialised

and hence display NULL address.

Local pointer variables lp and p are

also created but not assigned any

address and therefore display

garbage addresses. Scope resolution

operator is used with global pointer

variable p since there is a local

pointer variable p in the main()

function block.

Pointer ip (integer pointer) is

assigned address of b (double

variable) and dp (double pointer) is

assigned address of a (integer

variable). Pointer variables ip and

dp displays the address correctly.

Then why does compiler flags

warning? We discuss this issue later.

C++ Notes Class XII Pointer and It’s Application

FAIPS, DPS Kuwait Page 4 of 17 © Bikram Ally

Dereferencing (Indirection)

A pointer variable contains an address of a variable. Indirectly accessing a variable (memory location

where the pointer variable is pointing to) through the pointer variable, is called Dereferencing or

Indirection. Unary operator star (*) is used with a pointer variable as a dereferencing operator. An

example is given below:

#include<iostream.h>

void main()

{

int a=2014, *ip=&a;

double b=89.7, *dp=&b;

cout<<"ip="<<ip<<" , dp="<<dp<<endl;

cout<<"*a="<<a<<" , b="<<b<<endl;

cout<<"*ip="<<*ip<<" , *dp="<<*dp<<endl;

a=2013;

b=92.3;

cout<<"Output after 1st updation\n";

cout<<"*a="<<a<<" , b="<<b<<endl;

cout<<"*ip="<<*ip<<" , *dp="<<*dp<<endl;

*ip=2012;

*dp=91.8;

cout<<"Output after 2nd updation\n";

cout<<"*a="<<a<<" , b="<<b<<endl;

cout<<"*ip="<<*ip<<" , *dp="<<*dp<<endl;

cout<<"Output after 1st updation\n";

}

Running of the program produces following output:
ip=0x0012ff88 , dp=0x0012ff80

a=2014 , b=89.7

*ip=2014 , *dp=89.7

Output after 1st updation

ip=0x0012ff88 , dp=0x0012ff80

a=2013 , b=92.3

*ip=2013 , *dp=92.3

Output after 2nd updation

ip=0x0012ff88 , dp=0x0012ff80

a=2012 , b=91.8

*ip=2012 , *dp=91.8

Diagrammatic representation of variables and pointers created in the above program, is given below:

ip a, *ip

dp b, *dp

Diagrammatic representation of variables and pointers created in the above program after 1st

updation, is given below:

ip a, *ip

dp b, *dp

Pointer variables ip and dp points

to variables a and b respectively.

Expressions *ip and *dp access

variables a and b respectively.

Since variables a and *ip share

same memory location, they are

alias of each other. Similarly

variables b and *dp are alias of

each other. Any change in the

variable a will update *ip and

vice versa. Any updation of either

a or *ip will not update address

stored in the pointer variable ip.

Also any change in the variable b

will change *dp and vice versa.

Any updation of either b or *dp

will not update address stored in

the pointer variable dp.

2014 0012ff88

89.7 0012ff80

2013 0012ff88

92.3 0012ff80

C++ Notes Class XII Pointer and It’s Application

FAIPS, DPS Kuwait Page 5 of 17 © Bikram Ally

Diagrammatic representation of variables and pointers created in the above program after 2nd

updation, is given below:

ip a, *ip

dp b, *dp

Now coming back to the point, why it is not proper to mix up data type of a pointer variable and the data

type of the variable whose address is to be assigned to the pointer variable.

#include<iostream.h>

void main()

{

int a=2014, *ip=&a;

double b=89.7, *dp=&b;

cout<<"Before\n";

cout<<"ip="<<ip<<" , dp="<<dp<<endl;

cout<<"*ip="<<*ip<<" , *dp="<<*dp<<endl;

ip=&b;

dp=&a;

cout<<"After\n";

cout<<"ip="<<ip<<" , dp="<<dp<<endl;

cout<<"*ip="<<*ip<<" , *dp="<<*dp<<endl;

}

Running of the program produces following output:
Before

ip=0x0018ff50 , dp=0x0018ff48

*ip=2014 , *dp=89.7

After

ip=0x0018ff48 , dp=0x0018ff50

*ip=-858993459 , *dp=3.47641e-308

Pointer to character

Pointer to character (char*) is little different from pointer to any other data type. In C++ pointer to a

character is treated like a string. A string in C++ is terminated by a nul character. In C++ array of

character, pointer to character and string are used interchangeably. All the string based functions of header

file <string.h> uses char* as parameter instead of array of character. An example of pointer to a character

is given below:

#include<iostream.h>

void main()

{

char x='S';

char *cp=&x;

cout<<"cp="<<cp<<endl;

cout<<"*cp="<<*cp<<endl;

}

Running of the program produces following output:
cp=S╕ ↕

*cp=S

Program is compiled with a

warning but addresses are

displayed properly. Problem arises

with dereferencing. A pointer to an

integer ip, will access a memory

location which is allocated 4 bytes.

But the pointer variable ip is

assigned the address of b, which of

the type double. A variable of the

type double is allocated 8 bytes.

But the pointer variable accesses

only 4 bytes and as a result it points

to a garbage value. As far as the

address is concerned, address is

stored correctly but dereferencing

generates garbage value. Hence it is

a bad practice to mix data type of a

pointer variable and data type of the

variable.

2012 0012ff88

91.8 0012ff80

Pointer to char (cp), does not display

address stored in the pointer to char (cp). It

displays value stored in the character variable

x and then few garbage characters. Because a

pointer to a character is treated as a string. In

C++, string is an array of character terminated

by a nul character. So when displaying a

pointer to a character, cout looks for a

terminating nul character. So cout displays

garbage characters after S till it encounters

terminating nul character. The concept of

dereferencing remains the same.

C++ Notes Class XII Pointer and It’s Application

FAIPS, DPS Kuwait Page 6 of 17 © Bikram Ally

Pointer to char Pointer to int (any other data type)

 Pointer to char does not display address

stored in a pointer to char

#include<iostream.h>

void main()

{

char x='S', *cp=&x;

cout<<"cp="<<cp<<endl;

cout<<"*cp="<<*cp<<endl;

}

Running of the program produces following

output:
cp=S╕ ↕

*cp=S

 Pointer to int (pointer to any other data type)

displays address in a pointer to int

#include<iostream.h>

void main()

{

int y=100, *ip=&y;

cout<<"ip="<<ip<<endl;

cout<<"*ip="<<*ip<<endl;

}

Running of the program produces following

output:
ip=0012ff80

*ip=100

 Inputting a value using pointer to a char is

allowed but it may lead to logical error; this is

because pointer to a char represents string

and a string can be inputted

#include<iostream.h>

void main()

{

char *cp;

cout<<"String? "; cin>>cp;

cout<<"cp="<<cp<<endl;

}

Running of the program:
String? POINTER

cp=POINTER

Or,

Program may crash.

 Inputting value using a pointer to int (pointer

to any other type) will flag syntax error; this

because pointer to int represents address and

address cannot be inputted

#include<iostream.h>

void main()

{

int *ip;

cout<<"Address? ";

cin>>ip;

cout<<"ip="<<ip<<endl;

}

Running of the program:

Compiler flags syntax error in the highlighted

line

Pointer to struct (structure) / class type

Just like pointer to fundamental data type (char / int / float / double) we can also have pointer to

derived type like pointer to struct (structure) / class type. A struct / class type has to be declared first then

pointer to that struct / class type is to be created. One major difference between pointer to a fundamental

data type and pointer structure (class) type is the use of dereferencing (indirection) operator. For a

pointer to a fundamental type unary star operator (*) is used as dereferencing (indirection) operator but

generally for pointer to struct / class type binary arrow operator (->) is used as dereferencing

(indirection) operator. An arrow operator consists of two characters: dash/minus (-) followed by

greater than sign (>). An example is given below:

#include<iostream.h>

struct student

{

int roll;

char name[20];

double mark;

};

Pointer variable sp is a pointer to student

(struct type) and is assigned the address of the

structure variable stu. Displaying the pointer

variable sp will display the address of the variable

stu. Generally an arrow operator (->) is used as

a dereferencing operator.

C++ Notes Class XII Pointer and It’s Application

FAIPS, DPS Kuwait Page 7 of 17 © Bikram Ally

void main()

{

student stu={23, "Sandip Kr Jain", 91.5}, *sp=&stu;

cout<<"sp="<<sp<<endl;

cout<<sp->roll<<" , "<<sp->name<<" , "<<sp->mark<<endl;

}

Running of the program produces following output:
sp=0x0018ff2c

23 , Sandip Kr Jain , 91.5

Diagrammatic representation of variables and pointers created in the above program, is given below:

sp stu

Consider the structure declaration of student and the pointer variable sp created in the above example,

then following C++ statements will flag syntax error (all three statements):

cin>>*sp;

cout<<*sp<<endl;

cout<<*sp.roll<<*sp.name<<*sp.mark<<endl;

Pointer variable sp points to stu, that is, *sp is of the student (struct) type. C++ statements cin>>*sp;

and cout<<*sp; will flag syntax errors. Using star (*) as a dereferencing operator with a pointer to

struct (class) type, expressions *sp.roll, *sp.name and *sp.mark will flag syntax errors. Dot (.)

operator has higher precedence compared to star (*) operator. To remove the syntax errors, parenthesis is

needed around the expression *sp. Corrected C++ statements are given below:

cout<<(*p).roll<<(*p).name<<(*p).mark<<endl;

cout<<p->roll<<p->name<<p->mark<<endl;

Expressions (*sp).roll and sp->roll are same but (*sp).roll is more complicated compared

to sp->roll. * as a dereferencing operator can be used with pointer to any data type but -> can only

be used with pointer to struct (class) type. An example of pointer to class is give below:

#include<iostream.h>

class employee

{

char nam[20]; double sal;

public:

employee(char* n, double s) { strcpy(nam, n); sal=s; }

void show() { cout<<nam<<" , "<<sal<<endl; }

};

void main()

{

employee a("Deepak Agarwal", 90000.0), *ep=&a;

cout<<"ep="<<ep<<endl;

ep->show();

}

Running of the program produces following output:
sp=0x0018ff2c

Deepak Agarwal , 90000

0018ff2c 23 "Sandip Kr Jain" 91.5

C++ Notes Class XII Pointer and It’s Application

FAIPS, DPS Kuwait Page 8 of 17 © Bikram Ally

A pointer to a class type is exactly similar to pointer to struct type. While dereferencing with a pointer to

class type, only public members of the class can be dereferenced with the pointer variable. Private

members and protected members of the class cannot be dereferenced with a pointer to a class type.

Consider the class declaration of employee and the pointer variable ep created in the above example,

then following C++ statement will flag as syntax error:

cout<<ep->nam<<ep->sal<<endl;

Compiler will flag syntax errors because nam and sal are private members of the class employee.

There are three ways remove the syntax error:

 Change class to struct because default visibility label of a member of a struct is public

 Change the visibility labels of the data members nam and sal from private to public

 Add two access functions to return the values stored in the private data members nam and sal and

instead of using the using the private data members nam and sal, use appropriate access functions

Dynamic Variable

Pointer is an address and why do we need to know the address of a variable? Well we are ready to answer

this question. Every type of variables that we have discussed so far – variables of fundamental type, array

variables, variables of the type struct / class (objects) and pointer variables, all are allocated memory

during the compilation time. Once the program is over, memory allocated to these variables are de-

allocated. These type variables are called static variable. It is called static because during run-time, no

allocation and no de-allocation is possible (or allowed) for these kind of variables. A classic example of a

static variable is an array. Array is decided during compilation time since an array size is a positive integer

constant. During the run-time, it is neither possible to expand nor possible to contract the size of the array.

So is there any way to create a variable whose memory allocated during run-time and de-allocated during

run-time? Answer is yes, it is possible through dynamic variable. A dynamic variable is a variable whose

memory is allocated and de-allocated during the runtime. To create a dynamic variable we need a pointer

variable. Why pointer variable? Because pointer variable will store the address of the dynamic variable.

Along with pointer we also need two unary operators:

 new – to allocated memory during the run-time

 delete – to de-allocated memory during the run-time

Operators new and delete are keywords and also called memory management operators because these

two operators manage allocation/de-allocation of memory during the run-time.

Rule: DataType *PtrVar = new DataType;

delete PtrVar;

DataType is either fundamental data type or derived data type and PtrVar is the name of

the pointer variable. Operator new allocates memory during the run-time and address of the

allocated memory is stored in PtrVar. When allocating memory during the run-time, data

type is important since data type will decide how many byte(s) of memory is(are) to be

allocated. Every program is allocated fixed amount of memory. This fixed amount memory

space to be used for global variables, local variables and dynamic variables. During the run-

time this fixed amount of memory space may get exhausted. If this happens then the operator

new will fail to allocate memory during the run-time and in that case pointer variable PtrVar

will store a value NULL.

Operator delete de-allocates memory pointed to by PtrVar. If memory is allocated but not

de-allocated – it will result in memory leakage. Example of operators new and delete is

given in the next page:

C++ Notes Class XII Pointer and It’s Application

FAIPS, DPS Kuwait Page 9 of 17 © Bikram Ally

#include<iostream.h>
void main()

{

int *ip=new int;

double *dp=new double;

*ip=1122;

*dp=6.87;

cout<<"ip="<<ip<<",*ip="<<*ip<<endl;

cout<<"dp="<<dp<<",*dp="<<*dp<<endl;

delete dp;

delete ip;

cout<<"ip="<<ip<<",*ip="<<*ip<<endl;

cout<<"dp="<<dp<<",*dp="<<*dp<<endl;

}

Running of the program produces following output:
ip=0x01d329e8,*ip=1122

dp=0x01d329f8,*dp=6.78

ip=0x01d329e8,*ip=4241844

dp=0x01d329f8,*dp=1.86076e-307

Diagrammatic representation pointers and dynamic variables created in the above program is given below:

ip *ip

dp *dp

In the previous example, memory was allocated dynamically and the address was stored in a pointer

variable. Value was stored in dynamic variable by using assignment operator. But value can be stored in

dynamic variable when the dynamic variable is being created. An example is given below:

int *ip=new int (1122);

double *dp=new double (67.8);

cout<<"ip="<<ip<<" , *ip="<<*ip<<endl;

cout<<"dp="<<dp<<" , *dp="<<*dp<<endl;

delete ip;

delete dp;

Running of the program segment will produces following output:
ip=0x00902a08 , *ip=1122

dp=0x009029e8 , *dp=67.8

Value that is to be assigned to the newly created memory location is written within a pair of parenthesis.

Statement int *ip=new int (1122); does three things:

 Creates a pointer variable ip

 Address of dynamic variable (*ip) is stored in ip

 Dynamic variable (newly allocated memory location *ip) is initialized with a value 1122, that is,

the memory location *ip stores a value 1122

Concept of dynamic variable is also applicable for derived type like struct and class. As mentioned earlier,

operators new and delete can be used with pointer to derived type (struct / class type). Examples are

given in the next page showing the use of new and delete with pointer to struct / class.

Expression new int allocate memory

dynamically during the run-time whose

address is stored in the pointer variable

ip. Newly allocated memory location is

called *ip. Expression new double

allocate memory dynamically during the

run-time whose address is stored in the

pointer variable dp. Newly allocated

memory location is called *dp. Values

are assigned to *ip and *dp.

Expressions delete ip de-allocates

memory pointed to by ip, that is,

memory allocated to *ip is de-

allocated. Expression delete dp de-

allocates memory pointed to by dp. It is

bad practice to access a dynamic

variable after dereferencing.

1122 01eb29e8

67.8 01eb29f8

C++ Notes Class XII Pointer and It’s Application

FAIPS, DPS Kuwait Page 10 of 17 © Bikram Ally

#include<iostream.h>
struct student

{

int roll; char name[20]; double marks;

};

void main()

{

student stu={23, "Sandip Kr Jain", 88.5};

student *sp=new student (stu);

cout<<"sp="<<sp<<endl;

cout<<sp->roll<<" , "<<sp->name<<" , "<<sp->marks<<endl;

delete sp;

}

Running of the program produces following output:
sp=0x01f229e8

23 , Sandip Kr Jain , 88.5

Diagrammatic representation of pointer and dynamic variable created in the above program, is given

below:

sp *sp

#include<iostream.h>
class student

{

int roll; char name[20]; double fees;

public:

student(int ro, char* na, double fe)

{

roll=ro;

strcpy(name, na);

fees=fe;

}

void display() { cout<<roll<<" , "<<name<<" , "<<fees<<endl; }

};

void main()

{

student *sp=new student(18, "Jaydeep Singh", 6000);

cout<<"sp="<<sp<<endl;

sp->display();

delete sp;

}

Running of the program produces following output:
sp=0x01d729e8

18 , Jaydeep Singh , 6000

Diagrammatic representation of pointer and dynamic variable created in the above program, is given

below:

sp *sp

01f229e8 23 "Sandip Kr Jain" 88.5

01d729e8

18 "Jaydeep Singh" 6000

C++ Notes Class XII Pointer and It’s Application

FAIPS, DPS Kuwait Page 11 of 17 © Bikram Ally

Array and Pointer

In C++ array and pointers are very closely related. Array name is a constant pointer – represents the

address of first element of an array. Displaying an array name (except for array of char – displays string)

will display the starting address of the array. Since an array name is a pointer, array name can be assigned

to a pointer variable. It is important to note that array variable’s data type and pointer variable’s data must

be same. If pointer variable’s data type and array variable’s data type do not match then the compiler will

either flag a warning or a syntax error. An example is given below:

#include<iostream.h>

void main()

{

int a[]={12, 35, 46, 89, 63}, *ip=a;

char b[]="JULY MORNING", *cp=b;

double c[]={1.2, 3.5, 4.6, 8.9, 6.3}, *dp=c;

cout<<"Address of a="<<a<<" , "<<&a[0]<<" , "<<ip<<endl;

cout<<"String b="<<b<<" , "<<&b[0]<<" , "<<cp<<endl;

cout<<"Address of c="<<c<<" , "<<&c[0]<<" , "<<ip<<endl;

for (int k=0; k<5; k++)

cout<<a[k]<<" , "<<c[k]<<endl;

ip=c; dp=a;

cout<<"ip="<<ip<<endl;

cout<<"dp="<<dp<<endl;

}

Running of the program produces following output:
Address of array a=0x0018ff40 , 0x0018ff40 , 0x0018ff40

String b=JULY MORNING , JULY MORNING , JULY MORNING

Address of array c=0x0018ff08 , 0x0018ff08 , 0x0018ff08

12 , 1.2

35 , 3.5

46 , 4.6

89 , 8.9

63 , 6.3

ip=0x0018ff04

dp=0x0018ff40

Pointer of the type void is called generic pointer(type less pointer). A generic pointer can store address

of any variable / array. But disadvantage of generic pointer is that, dereferencing a generic pointer will

flag syntax error. An example is given below:

#include<iostream.h>

void main()

{

int x=39;

char y='T';

double z=2.5;

void *p=&x;

cout<<p<<" , "<<*p<<endl;

p=&y;

cout<<p<<" , "<<*p<<endl;

p=&z;

cout<<p<<" , "<<*p<<endl;

}

Pointer variables p is a generic pointer

(pointer to void). Pointer variable p first

stores address of x and next it stores address

of y. Finally it stores the address of z. When

compiling the program, expression *p will

flag syntax error since *p is of the type void.

It is possible to dereference a generic pointer

by proper typecasting. An example is given

in the next page after making the necessary

corrections.

Borland C++ 5.0 compiler will flag a warning for ip=c; and dp=a;

Since ip (pointer to an int) is assigned the address of array c (array

of double - pointer to double) and dp (pointer to double) is

assigned the address of array a (array of int - pointer to int).

C++ Notes Class XII Pointer and It’s Application

FAIPS, DPS Kuwait Page 12 of 17 © Bikram Ally

#include<iostream.h>

void main()

{

int x=39;

char y='T';

double z=2.5;

void *p=&x;

cout<<p<<" , "<<*(int*)p<<endl;

p=&y;

cout<<p<<" , "<<*(char*)p<<endl;

p=&z;

cout<<p<<" , "<<*(double*)p<<endl;

}

Running of the program produces following output:
0x0018ff50 , 39

0x0018ff4f , T

0x0018ff44 , 2.5

Dynamic Array

Any array in C++ is allocated memory during compilation time and that is reason why array size in C++

has to be a positive integer constant. Any attempt to create an array variable where array size is a variable

will result in syntax error. But with dynamic memory it is possible to create an array whose size can be

decided during the run-time and memory allocated to a dynamic array can be de-allocated during the run-

time Dynamic array is created during the run-time by using the operator new and it is de-allocated during

the run-time by using the operator delete.

Rule: DataType *PtrVar = new DataType [Size];
delete []PtrVar;

DataType is the data type is either fundamental type or derived type and PtrVar is the

name of the pointer variable. Size represents size of the array. Size could either be or

positive integer constant or positive integer variable or positive integer expression.

Operator new allocates a block of memory with Size number of contiguous memory

locations and starting address of the block will be stored in the pointer variable PtrVar

(dynamic array name). The pointer variable PtrVar will a value NULL if no more memory

space is available for allocation during the run-time.

Operator delete de-allocates contiguous memory block during the run-time pointed to by

the pointer variable PtrVar (dynamic array name). Entire block of memory location will be

de-allocated. Use of [] before the pointer variable PtrVar is very important because without

[], delete only de-allocates the first memory location in the block.

Example 1 (Dynamic Array of Integers):
#include<iostream.h>

#include<stdlib.h>

void main()

{

int n;

cout<<"Number of elements? "; cin>>n;

int *arr=new int[n];

for (int x=0; x<n; x++)

arr[x]=random(90)+10;

Expression *(int*)p first type cast

pointer variable p (generic pointer) to

pointer to int (int*). Next *(int*)p

will represent the value in the memory

location pointed to by the p.

Expression *(char*)p first type cast

pointer variable p (generic pointer) to

pointer to char (char*). Next

(char)p will represent the value in the

memory location pointed to by the p.

Expression *(double*) p first type cast

pointer variable p (generic pointer) to

pointer to double (double*). Next

(double)p will represent the value in

the memory location pointed to by the p.

C++ Notes Class XII Pointer and It’s Application

FAIPS, DPS Kuwait Page 13 of 17 © Bikram Ally

for (int k=1; k<n; k++)

for (int j=0; j<n-k; j++)

if (arr[j]>arr[j+1])

{

int t=arr[j]; arr[j]=arr[j+1]; arr[j+1]=t;

}

for (int c=0; c<n; c++)

cout<<arr[c]<<" ";

delete []arr;

}

Running of the program produces following output:
Number of elements? 15

14 20 22 26 34 36 37 42 66 67 76 85 90 96 97

Example 2 (Dynamic Array of floating point values):
#include<iostream.h>

#include<stdlib.h>

void main()

{

int n;

cout<<"Number of elements? "; cin>>n;

double *arr=new double[n];

for (int x=0; x<n; x++)

arr[x]=(random(90)+10)/10.0;

for (int k=1; k<n; k++)

for (int j=0; j<n-k; j++)

if (arr[j]>arr[j+1])

{

double t=arr[j]; arr[j]=arr[j+1]; arr[j+1]=t;

}

for (int c=0; c<n; c++)

cout<<arr[c]<<" ";

delete []arr;

}

Running of the program produces following output:
Number of elements? 10

2.2 2.4 4.1 5 6 6.3 7.3 8.6 8.9 9.2

Example 3 (Dynamic Array of characters):
#include<iostream.h>

#include<stdio.h>

void main()

{

char *str=new char[40];

cout<<"Input a string? "; gets(str);

cout<<"Inputted string="<<str<<endl;

delete []str;

}

Running of the program produces following output:
Input a string? Weekends are Friday and Saturday
Inputted string=Weekends are Fridays and Saturdays

C++ Notes Class XII Pointer and It’s Application

FAIPS, DPS Kuwait Page 14 of 17 © Bikram Ally

Example 4 (Dynamic Array of structure type):
#include<iostream.h>

struct student

{

char name[10]; double mark;

};

void main()

{

int n;

cout<<"Positive integer? "; cin>>n;

student* arr=new student[n];

for (int x=0; x<n; x++)

{

cout<<"Name and Mark? "; cin>>arr[x].name>>arr[x].mark;

}

for (int k=1; k<n; k++)

for (int j=0; j<n-k; j++)

if (arr[j].mark<arr[j+1].mark)

{

student t=arr[j]; arr[j]=arr[j+1]; arr[j+1]=t;

}

cout<<"Displaying array sorted in descending order on Mark\n";

for (int c=0; c<n; c++)

cout<<arr[c].name<<" , "<<arr[c].mark<<endl;

delete []arr;

}

Running of the program produces following output:
Number of elements? 5

Name and Mark? Ankita 90.5

Name and Mark? Hitesh 78.5

Name and Mark? Sooraj 93.5

Name and Mark? Deepak 88.5

Name and Mark? Farida 82.5

Displaying array sorted in descending order on Mark

Sooraj , 93.5

Ankita , 90.5

Deepak , 88.5

Farida , 82.5

Hitesh , 78.5

What can / cannot be done with a pointer variable?

1. A pointer variable can be assigned an address.

 A pointer variable can be assigned a value NULL
int *ip=NULL

double *dp=NULL;

 A pointer variable can be assigned an address of a variable / array
int a=2014, arr1[]={10, 20, 30, 40, 50};

char str[]="Summer Break!", *cp=str;

double b=91.4, arr2[]={1.4, 3.2, 5.3, 2.7, 4.8};

int *ip1=&a, *ip2=arr1;

double *dp1=&b, *dp2=arr2;

C++ Notes Class XII Pointer and It’s Application

FAIPS, DPS Kuwait Page 15 of 17 © Bikram Ally

 A pointer variable can be assigned an address of another pointer variable (same data type)
int a=2014, b=2013, *pa=&a, *pb=&b;

cout<<"pa="<<pa<<" , *pa="<<*pa<<endl;

cout<<"pb="<<pb<<" , *pb="<<*pb<<endl;

pa=pb;

cout<<"pa="<<pa<<" , *pa="<<*pa<<endl;

cout<<"pb="<<pb<<" , *pb="<<*pb<<endl;

Running of the program segment produces following output:
pa=0x0018ff50 , *pa=2014

pb=0x0018ff4c , *pb=2013

pa=0x0018ff4c , *pa=2013

pb=0x0018ff4c , *pb=2013

pa a, *pa

pb b, *pb

After assigning address stored in the variable pb to the pointer variable pa (pa=pb;):

pa a

pb b, *pa, *pb

 A pointer variable can be assigned an address of a dynamic variable / dynamic array
int *ip=new int;

char *cp=new char;

double *dp=new double;

int *arr1=new int[20];

char *arr2=new char[80];

double *arr3=new double[10];

2. A pointer variable can be displayed.
int a=2014, arr1[]={10, 20, 30, 40, 50};

double b=91.4, arr2[]={1.4, 3.2, 5.3, 2.7, 4.8};

int *ip1=&a, *ip2=arr1;

double *dp1=&b, *dp2=arr2;

cout<<"ip1="<<ip1<<" , ip2="<<ip2<<endl;

cout<<"dp1="<<dp1<<" , dp2="<<dp2<<endl;

3. Increment (++) and decrement (--) operators can be used with a pointer variable

Increment and decrement operator used with a pointer variable legally, when a pointer variable stores

an address of an array.
int arr[]={12, 35, 46, 89, 63, 27, 94, 76, 55, 81}, *ptr=arr;

ptr

arr

cout<<ptr<<" , "<<*ptr<<endl; will display address of the first element of the array and

the value stored in the first element in the array (0x0018ff2c , 12) will be displayed. ptr++;

0 1 2 3 4 5 6 7 8 9

12 35 46 89 63 27 94 76 55 81

2014 0012ff50

2013 0012ff4c

2014 0012ff50

2013 0012ff4c

0012ff2c

C++ Notes Class XII Pointer and It’s Application

FAIPS, DPS Kuwait Page 16 of 17 © Bikram Ally

(Or ++ptr; Or ptr=ptr+1; Or ptr+=1;) will update the pointer variable ptr to point to the

second element (index 1) of the array.

ptr

arr

cout<<ptr<<" , "<<*ptr<<endl; will display address of the second element of the array

and the value stored in the second element in the array (0x0018ff30 , 35) will be displayed.

ptr++; will update the pointer variable ptr to point to the third element (index 2) of the array.

ptr

arr

cout<<ptr<<" , "<<*ptr<<endl; will display address of the third element of the array and

the value stored in the third element in the array (0x0018ff34 , 46) will be displayed.

ptr++; will update the pointer variable ptr to point to the fourth element (index 3) of the array.

ptr

arr

cout<<ptr<<" , "<<*ptr<<endl; will display address of the fourth element of the array and

the value stored in the fourth element in the array (0x0018ff38 , 89) will be displayed.

ptr+=3; will update the pointer variable ptr to point to the seventh element (index 6) of the array.

ptr

arr

cout<<ptr<<" , "<<*ptr<<endl; will display address of the seventh element of the array

and the value stored in the seventh element in the array (0x0018ff44 , 94) will be displayed.

ptr+=3; will update the pointer variable ptr to point to the tenth element (index 6) of the array.

ptr

arr

cout<<ptr<<" , "<<*ptr<<endl; will display address of the seventh element of the array

and the value stored in the seventh element in the array (0x0018ff44 , 94) will be displayed.

0 1 2 3 4 5 6 7 8 9

12 35 46 89 63 27 94 76 55 81

0 1 2 3 4 5 6 7 8 9

12 35 46 89 63 27 94 76 55 81

0 1 2 3 4 5 6 7 8 9

12 35 46 89 63 27 94 76 55 81

0 1 2 3 4 5 6 7 8 9

12 35 46 89 63 27 94 76 55 81

0 1 2 3 4 5 6 7 8 9

12 35 46 89 63 27 94 76 55 81

0012ff30

0012ff34

0012ff38

0012ff44

0012ff44

C++ Notes Class XII Pointer and It’s Application

FAIPS, DPS Kuwait Page 17 of 17 © Bikram Ally

So it is very clear that ptr++ will update the pointer variable to point to the next element of the array.

But if the pointer variable ptr is pointing to the last element of the array, then ptr++ will point to

an unallocated memory location containing garbage value. The example above uses an array of int

and pointer to an int but the concept is applicable for any data type including char type derived

data type struct / class.

4. A pointer variable can be passed as a value / reference parameter to a function

5. A value cannot be inputted into a pointer variable except pointer to a character

