
vinodsrivastava.wordpress.com

Question Bank Term-1

Q1 Write Header File for following Function/object

Function/object presents in header file Header file required

cin, cout, endl, iostream.h,

gets(), puts(), stdio.h

M_PI, abs(), labs(), fabs(), cabs(), sqrt(), pow(), pow10(), exp(),
log(), log10(), sin(), cos(), tan(), fmod() math.h

toupper(), tolower(), isupper(), islower(), isalpha(), isdigit(),
isalnum() ctype.h

strcpy(), strlen(), strupr(), strlwr(), strrev(), strcat(), strcmp(),
stricmp(), strcmpi() string.h

getch() conio.h

Q2 What is Variables ?
A variable is name given to a memory location to store value in the computer’s main storage. The value
assigned to the variable name may change (vary) as the program is executed.

Q 3 Write four Rules for naming a C++ variable (identifier)
1. Variable name should start with an alphabet (letter) or an underscore.
2. Variable name may contain more than one character. Second characters onwards we may use only

alphabets or digit or underscore.
3. No special characters are allowed in a variable name except underscore.
4. A variable name in C++ is case sensitive. Uppercase and lowercase letters are distinct. A variable name

cannot be a keyword.
5. A variable name cannot be a keyword.

Q4. Identify three incorrect identifier names and explain why, from the list given below:

 long, AD_No, INT, comp-sc, CAL29, 2ndfloor, price, cell#
Ans: 1. long – It is a keyword

2. comp-sc – It uses a special character other than underscore (-)
3. cell# - It uses a special character other than underscore (#)

Sample Paper-6

11 Question Bank-1 C++@ VKS-Learning Hub Page 2

Q 5. Give the memory allocation for following Data Type char, int, float, double

Date Type Storage (Memory Allocation) Range of values

1. char 1 byte or 8 bits -128 to 127

2. int 4 bytes or 32 bits -2147483648 to 2147483647

3. float 4 bytes or 32 bits 3.410-38 to 3.41038

4. double 8 bytes or 64 bits 1.710-308 to 1.710308

Q6. What is Type Casting explain different way to do typecasting in C++
Typecasting: converting data from one type to another type temporarily, inside the processor (CPU).
Examples of Type casting are given below:

#include<iostream.h>
void main()
{

int m, n;
cout<<"Input 2 integers? ";
cin>>m>>n;
double r1=double(m)/n;
double r2=(double)m/n;
cout<<r1<<','<<r2<<endl;

}

Q7. What are type Modifer. Name type modifier in C++ also identify data type(s) which support these
modifier or does not support any
Type Modifier :Type modifiers are used to change default type of the built-in data types. Type modifiers
supported by C++ are long, short, signed and unsigned.

 Data type void and float does not support any type modifiers.
 Data type int supports all the four type modifiers.
 Data type char supports signed and unsigned.
 Data type double supports long.
 Data type is assumed to be int, if only type modifiers are used to create a variable.

Q8. Define Token? Give some example of Token
Token :Building block of a program is called a token. It is also called program element. Tokens of a C++
program can be classified as Keyword, Identifier, Constant, Operator, String and Comment.

Q9. What are identifier how they are different from Keyword

Keyword: Built-in Identifier

No header File Required Built-in identifier we need appropriate header file.

Cannot be redefined Can be redefined

Q10. What are operator? What are different type of operators. Give example(s) of each
Operator: Operators are used in C++ to carry out various functions. An operator in C++ can be unary,
binary and ternary.
Unary operator: An operator that needs one operand. Examples: Unary -, unary +, ++, -- and !. There are
more unary operators, but they will be discussed later.
Binary operator: An operator that needs two operands. Example: Binary +, Binary -, *, /, %, C++ short
hand operators, logical operators, && and ||. More binary operators will be discussed later.
Ternary operator: An operator that needs three operands. Ternary operator is also known as Conditional
operator. Example ? :

Sample Paper-6

11 Question Bank-1 C++@ VKS-Learning Hub Page 3

Q11 What are increment & decrement Operator explain with example how it can be used
Increment Operator: Increment operator (++) increments value stored in a variable by 1 (One). Increment
operator works with character (char) type data, integer (int) type data and floating point (float and double)
type data. Examples of Increment operators are given below:

Operator C++ Statement Output Explanation

Pre
++

cout<<++x<<endl;
cout<<x<<endl;

7
7

Increments x and then displays x
Displays incremented values stored in x

post
++

cout<<x++<<endl;
cout<<x<<endl;

6
7

Displays x and then increments x
Displays incremented values stored in x

Decrement Operator: Decrement operator (--) decrements value stored in a variable by 1 (One). Decrement
operator works with character (char) type data, integer (int) type data and floating point (float and double)
type data. Examples of Decrement operators are given below:

Operator C++ Statement Output Explanation

--
cout<<--z<<endl;
cout<<z<<endl;

25
25

Decrements z and then displays z
Displays decremented values stored in z

--
cout<<z--<<endl;
cout<<z<<endl;

26
25

Displays z and then decrements z
Displays decremented values stored in z

Note : Cascading of increment/decrement operator with << in single cout statement evaluation will
start from right hand side to left hand side and display will be from left hand to right hand side

Q12 Give the Output of the code
void main()
{
int a=35;
cout << ++a << ',' << a++ << ',' << a++ << endl;
cout << a-- << ',' << --a << ',' << --a << endl;
getch();
}
Ans: 38,36,35

36,36,37

Q13 Explain Ternary Operator (Conditional Operator) with example
Ternary operator is used in place of if-else statement. But all if-else statement cannot be replaced by
Ternary operator. It is called ternary operator since an expression involving ternary operator requires three
(3) operands and two (2) operators. The two Ternary operator is more compact compared to if-else
statement.

Rule: Condition? Action1: Action2

 int x=10,y=5;

 (x>y)?cout<<"x is greter":cout<<"y is greater" ; // OUTPUT: x is greater

Note Question asking to write logical expression will not contain if –else it will be purely logical expression
Q14. Write C++ logical expression (do not use C++ built-in functions):

i) To check that a character variable mychar contains only alpabets
ii) To check that an integer variable number is even no not divisible by 4
iii) To check that an integer variable marks contains a value between 300 and 500

Ans: i) mychar >= ‘A’ && mychar <= ‘Z’
ii) number%2 == 0 && number%4 != 0
iii) marks >= 300 && marks <= 500

Note do not use if statement otherwise it will treated wrong

Sample Paper-6

11 Question Bank-1 C++@ VKS-Learning Hub Page 4

Q15. Give output

int value=10>5 && 10<5 || 10==5;
cout<<value<<endl;
Ans 0

Q16. What are comment ? explain two types of comment with example
Comment: Non executable statements of a C++ program are called Comments. Comments are also known

as Remarks. A Comment is completely ignored by a compiler. C++ supports two types of Comments:
Single Line Comment and Multi-Line Comment.

Single line Comment:Single Line Comment starts with pair of forward slash (//) and till the end of line is

considered as a Comment. Examples of Single Line Comment are given below:
// single line comment
// in C++ style

Multi-line comment: Multi-line comment start with forward slash and star (/*) and with star and forward
slash (*/). Examples of Multi-Line Comment are given below:

/*
multi-line comments
comment in C style */

Q17. What are compiler directive/ Pre-processor give two examples
Compiler directive: instruction given to the compiler. Compiler directive is also called Pre-processor. C++
statement is an instruction given to CPU or to the computer. It is called Pre-Processor because instruction to
the compiler given before the processing starts. Every Compiler Directive begins with hash (#). Examples of
Compiler Directives are : #include: is used to include header files

 #define: is used to create C++ macros

Q18 Differentiate between Run time & Logical Error with example

Run time error Logical error

Syntactically correct statement performs illegal
operation during execution of a program is
called Run-Time errors.

An error in program design or program
implementation that does not prevent your
program from compiling, but causes it to do
something unexpected.

Example:
Division by zero (0),
Square root of a negative number.

Example:
Variables with incorrect or unexpected values.
Incorrect formulae
Incorrect use of operators

Q19 Differentiate between Syntax & Run time

Syntax error Run time error

Error committed when the grammar of the
language is violated.

Syntactically correct statement performs
illegal operation during execution of a
program when the program encounters
unexpected data is called Run-Time errors.

Syntax errors are detected at compile time. Run time errors are detected at run time.

Example:
Typographical mistakes like missing semicolon
Use of undeclared variable

Example:
Division by zero (0)
Square root of a negative number

Q20 Mention two differences between data type float and data type double.

float Data Type double Type

float uses 4 bytes double uses 8 bytes.

Sample Paper-6

11 Question Bank-1 C++@ VKS-Learning Hub Page 5

float does not support any type modifier double supports ‘long’ type modifier.

 Q21 Explain with example difference between Entry Level & Exit Level Loop

Entry controlled Loop Exit Controlled Loop

Looping condition is checked at the beginning of
the loop.

Looping condition is checked at the end of
the loop.

Loop does not execute even once if the looping
condition is false in the beginning itself.

Loop executes at least once irrespective of
the looping condition.

Example:
for (int x=2; x>5; x++)
{cout<<x<<", "; }

Example:
int x=2;
do
{ cout<<x<<", "; }
While (x>5);

Q22. Write a complete C++ program to input name of a student (string), theory marks (out of 70), practical

marks (out of 30) and weekly test marks (out of 40); calculate term total (theory + practical) and grand

total (80% of term total + 50% of weekly test). Display name, theory marks, practical marks, weekly test

marks, term total and grand total on the screen.

#include<iostream.h>
void main()

{

char name[20];

double theo, prac, wt;

cout<<"Student Name? ";

cin>>name; //Input name without space

cout<<"Theory marks[0-70]? "; cin>>theo;

cout<<"Practical marks[0-30]? "; cin>>prac;

cout<<"Weekly Test marks[0-40]? "; cin>>wt;

double term=theo+prac;

double grand=0.8*term+0.5*wt;

cout<<"Name ="<<name<<endl;

cout<<"Theory ="<<theo<<endl;

cout<<"Practical ="<<prac<<endl;

cout<<"Term Total ="<<term<<endl;

cout<<"Weekly Test="<<wt<<endl;

cout<<"Grand Total="<<grand<<endl;

}

Sample Paper-6

11 Question Bank-1 C++@ VKS-Learning Hub Page 6

Note : attention should be given for proper data type variable declaration

Q23. Write a complete C++ program to input employee name (string), basic salary; calculate house rent

(40% of basic salary), dearness allowance (65% of basic salary), city allowance (15% of basic salary),

gross salary (basic salary + house rent + dearness allowance + city allowance), provident fund

deductions (10% of gross salary) and net salary (gross salary - provident fund deductions). Display basic

salary, house rent, dearness allowance, city allowance, gross salary, provident fund deductions and net

salary on the screen.

#include<iostream.h>
void main()

{

char name[20];

double basic;

cout<<"Employee Name? ";

cin>>name; //Input name without space

cout<<"Basic Salary? ";

cin>>basic;

double hrent=0.4*basic;

double dallow=0.65*basic;

double callow=0.15*basic;

double gross=basic+hrent+dallow+callow;

double pfund=0.1*gross;

double net=gross-pfund;

cout<<"Name ="<<name<<endl;

cout<<"Basic Salary ="<<basic<<endl;

cout<<"House Rent ="<<hrent<<endl;

cout<<"Dearness Allowance ="<<dallow<<endl;

cout<<"City Allowance ="<<callow<<endl;

cout<<"Gross Salary ="<<gross<<endl;

cout<<"Provident Fund ="<<pfund<<endl;

cout<<"Net Salary ="<<net<<endl;

}

*Note Using int as datatype for a variable like hrent /dallow where value is decimal will leads to logical error

Sample Paper-6

11 Question Bank-1 C++@ VKS-Learning Hub Page 7

Q24. Explain with Example different part of Function

a) Function Header: it contains the name of the function, return value of the function and optional
list of formal parameters, that is, it is not necessary that every function must have parameters.
Function header is also called Function Declarator.
b) Function Body: it is the block after the function header. Function block contains statement
that carries out action inside the function including the optional return statement. If the return value of
a user defined function is void, then return statement is not required. Function Body is also called
Function Block. Function header along with function block defines a complete function. An example
of a user defined function is given below:

 double factorial(int n)
{

double fact=1;
for (int k=1; k<=n; k++)

fact*=k;
return fact;

}

Function Header

Function

Block

Function
Definition=function
header + function
block together

a) Name of the function is factorial
b) Return value of the function is double
c) Function has a formal parameter int n
d) Block after the function header is the body of the function. Function header plus function block is the

function definition.

 Q25. When is return statement necessary in a C++ function? What is the role of return statement?
Return statement is necessary in a C++ function when the return type of the function is not void but some
other data type.Return statement serves 3 purpose
a) It terminates the function
c) Returns a value to the calling function
b) Program control returns to calling function

Q26 Explain with example correct way to invoke a function with void return type & double return type
Comparing factorial() function with return value double and with return value void.

Return value of a function is double Return value of a function is void

double factorial(int n)
{ double fact=1;

for (int k=1; k<=n; k++)
fact*=k;

return fact; }

void factorial(int n)
{ double fact=1;

for (int k=1; k<=n; k++)
fact*=k;

cout<<fact<<endl; }

Correct function invocation Correct function invocation

Var=FunctName(ActualParam);
cout<<FunctName(ActualParam);
double f1=factorial(m);
cout<<factorial(m);

FunctName(ActualParam);
factorial(m);
factorial(8);
factorial(m+3);

Q27 What happen when return type of function is void and user have given return statement;
Ans Complier will flag error

Q28 What happen when return type of function is not void and user have not given return statement;
Ans Complier will compile the program but flag warning. At run time it will stop or halt the program

Sample Paper-6

11 Question Bank-1 C++@ VKS-Learning Hub Page 8

Q 29. What is Function prototype Explain with example
A function declaration contains Function name, Return value of the function, Data type of optional list of
formal parameters and a Semi-colon at the end. Name of the formal parameters are not important in a
function declaration. But if the formal parameter names are included in the function declaration, then they are
ignored by the compiler. Function Declaration (Function Prototype) are declared before main() and its
function definition is given after main()

#include<iostream.h>
double factorial(int);
void main()
{ int m;

cout<<"Input an integer? ";
cin>>m;
double f1=factorial(m);
cout<<m<<"!="<<f1<<endl; }

double factorial(int n)
{ double fact=1;

for (int k=1; k<=n; k++)
fact*=k;

return fact; }

Blue highlighted line is the Function
Declaration or Function Prototype. Pink
highlighted line is the Function Invocation.
When the compiler encounters the function
declaration, it knows that somewhere in the
block of the main() function, it will come across
a function invocation which will match function
declaration but the function definition will be
after the main() function. This is another
common practice to first declare the function
and then define the function after the main()
function. In this, function’s declaration is
separated from its definition and when coding
large program this type of methodology is
followed.

Q30. Difference between Function prototype & Function Definition with example

Function Declaration/Prototype Function Definition

A function declaration contains Function name,
Return type of the function, optional list of formal
parameters, and a Semi-colon at the end.

A function definition is the complete function,
that is, header and the body.

Name of the formal parameters are not compulsory
in a function declaration.

Name of the formal parameters are
compulsory in a function definition.

Example:
#include<iostream.h>
double factorial(int); //function declaration
void main()
{

int m;
cout<<"Input an integer? ";
cin>>m;
double f=factorial(m);
cout<<m<<"!="<<f<<endl;

}
double factorial(int n)
{

double fact=1;
for (int k=1; k<=n; k++)

fact*=k;
return fact;

}

Function definition

Sample Paper-6

11 Question Bank-1 C++@ VKS-Learning Hub Page 9

31. Difference between Actual Parameter and Formal Parameter with proper example

Actual Parameter Formal Parameter

 Parameter used in function invocation Parameter used in function definition

 Actual parameter may be a variable or an
expression or a constant

 Formal parameter is always variable (or an alias)

Example:
#include <iostream.h>

 void first(int b) //b is the formal parameter
{ b++; cout<<b; }

void main()
{ int a = 10;

first(a); // a is the actual parameter
first(a+10); //a+10 is the actual parameter

}
Q32. Difference between Value Parameter and Reference Parameter

Value Parameter Reference Parameter

 Copy of actual parameter Alias of actual parameter

 Change in value parameter does not
change actual parameter

 Change in reference parameter, updates actual
parameter

 Transfer of data is one way, from calling
function to called function

 Transfer of data is two ways, from calling function
to called function and vice-versa

 Actual parameter may either be a variable
or an expression or a constant

 Actual parameter can only be a variable, it cannot
be constant or expression

Q33. Difference between Local & Global Variable with example

Local Variable Global variable

Default value of a Local Variable is garbage Default value of a Global Variable is 0

A local variable is visible inside the block and
blocks nested blow

A global variable is visible throughout the program –
main() function and all other user defined functions

Longevity of a local variable is as long as the
block is active

Longevity of a global variable is as long as the
program is active

Example:
#include <iostream.h>
int a=4; // global variable
void first()
{ int b = a; // b is local variable

cout<<a+b;
a++; b--; }

void main()
{ cout<<a; //global a

first(a);
cout<<b; //Syntax error. Local variable of a
 //function is not accessible in some other function

}

Sample Paper-6

11 Question Bank-1 C++@ VKS-Learning Hub Page 10

Q35. What is an alias? How is an alias created? Give a suitable example to create an alias.
 An alias is another name given to an already existing variable. An alias is created by the following rule:

DataType& NewVariableName=OldVariableName;
Example:

int x=35;
int& y=x;

 Q36. Name the keywords which are optional in switch-case.

break and default are optional keywords in switch-case.
Q37 When is a scope resolution operator necessary with a global variable?

When local & global variable having the same name and to distinguish between local or global variable
we use scope resolution(::) before global variable.

Q38 Some USEFUL Functions

int countdigit(int n)
{
 int count=0;

while (n!=0)
{

count++;
n/=10;

}
return count;

 }

int sumofdigit(int n)
{
 int sum=0;

while (n!=0)
{

sum+=n%10;
n/=10;

}
return sum;

}

int reverseint(int n)
{

int num=0;
while (n!=0)
{

int digit=n%10;
num=10*num+digit;
n/=10;

}
return num;

}

int checkprime(int n)
{

int x=2;
int prime=1;
while (x<n && prime==1)

if (n%x==0)
prime=0;

else
x++;

return prime;
 }

int checkarmstrong(int n)
{

int sum=0, temp=n;
while (n>0)
{

int digit=n%10;
sum+=digit*digit*digit;
n/=10;

}
return sum==temp;

 }

int checkpalidrome(int n)
{

int num=0, temp=n;
while (n!=0)
{

int digit=n%10;
num=10*num+digit;
n/=10;

}
return temp==num;

}

Sample Paper-6

11 Question Bank-1 C++@ VKS-Learning Hub Page 11

int productofdigit(int n)
{
int prod=1;
while (n!=0)
{
int digit=n%10;
prod*=digit;
n/=10;
}
return prod; }

int productofdigit(int n)
{
int prod=1;
while (n!=0)
{
int digit=n%10;
if (digit!=0)
prod*=digit;
n/=10;
}
return prod; }

// Displays & find sum of all prime Nos
between 2 & n
#include<iostream.h>
void sumofprime(int n)
{

int sum=0;
for (int k=2; k<=n; k++)
{

int x=2, prime=1;
while (x<k && prime==1)

if (k%x==0)
prime=0;

else
x++;

if (prime==1)
{ cout<<k<<endl;

sum+=k;
}

}
cout<<"Sum Of Prime="<<sum;

}

// Displays first n Prime Nos, starting from 2
#include<iostream.h>
void generateprime(int n)
{

int k=2, count=0;
while (count<n)
{

int x=2, prime=1;
while (x<k && prime==1)

if (k%x==0)
prime=0;

else
x++;

if (prime==1)
{ cout<<k<<endl;

count++;
}
k++;

}
}

// Displays Armstrong Nos between 1 and n
void generatearmstrong(int n)
{

for (int k=1; k<=n; k++)
{

int sum=0, temp=k;
while (temp>0)
{

int digit=temp%10;
sum+=digit*digit*digit;
temp/=10;

}
if (sum==k)

cout<<k<<endl;
}

}

// Displays Prime Nos between 2 and n
void generateprime(int n)
{

for (int k=2; k<=n; k++)
{

int x=2, prime=1;
while (x<k && prime==1)
{

if (k%x==0)
prime=0;

x++;
}
if (prime==1)

cout<<k<<endl;
}

}

